Evidence that the negative BOLD response is neuronal in origin: A simultaneous EEG–BOLD–CBF study in humans

نویسندگان

  • Karen J. Mullinger
  • Stephen D. Mayhew
  • Andrew P. Bagshaw
  • Richard Bowtell
  • Susan T. Francis
چکیده

Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin of the negative BOLD response (NBR) remains incompletely understood. Here, we simultaneously recorded BOLD, EEG and cerebral blood flow (CBF) responses to 10 s blocks of unilateral median nerve stimulation (MNS) in order to interrogate the NBR. Both negative BOLD and negative CBF responses to MNS were observed in the same region of the ipsilateral primary sensorimotor cortex (S1/M1) and calculations showed that MNS induced a decrease in the cerebral metabolic rate of oxygen consumption (CMRO2) in this NBR region. The ∆CMRO2/∆CBF coupling ratio (n) was found to be significantly larger in this ipsilateral S1/M1 region (n=0.91±0.04, M=10.45%) than in the contralateral S1/M1 (n=0.65±0.03, M=10.45%) region that exhibited a positive BOLD response (PBR) and positive CBF response, and a consequent increase in CMRO2 during MNS. The fMRI response amplitude in ipsilateral S1/M1 was negatively correlated with both the power of the 8-13 Hz EEG mu oscillation and somatosensory evoked potential amplitude. Blocks in which the largest magnitude of negative BOLD and CBF responses occurred therefore showed greatest mu power, an electrophysiological index of cortical inhibition, and largest somatosensory evoked potentials. Taken together, our results suggest that a neuronal mechanism underlies the NBR, but that the NBR may originate from a different neurovascular coupling mechanism to the PBR, suggesting that caution should be taken in assuming the NBR simply represents the neurophysiological inverse of the PBR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity.

fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of the hemodynamic response is modulated by neuronal activity, the origin of the typically negative poststimulus signal is poorly understood and its a...

متن کامل

Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory

Post-stimulus undershoots, negative responses following cessation of stimulation, are widely observed in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) data. However, the debate surrounding whether the origin of this response phase is neuronal or vascular, and whether it provides functionally relevant information, that is additional to what is contained in the pri...

متن کامل

An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity.

In pathological conditions interpretation of functional magnetic resonance imaging (fMRI) results can be difficult. This is due to a reliance on the assumed coupling between neuronal activity and changes in cerebral blood flow (CBF) and oxygenation. We wanted to investigate the coupling between blood oxygen level dependant contrast (BOLD) and CBF time courses in epilepsy patients with generalis...

متن کامل

Negative BOLD and CBF responses are predicted by natural variations in evoked EEG response to a median nerve stimulus in humans

Introduction: Stimulus induced decreases in BOLD-fMRI signal, also known as negative BOLD responses (NBR) have been reported in visual [1] and somatosensory cortices [2]. Although its cause remains unclear, calibrated fMRI studies suggest that at least 60% of the NBR is neuronal [3] as opposed to being a haemodynamic (or steal) artefact. In addition, the magnitude of the NBR has been shown to i...

متن کامل

BOLD and perfusion changes during epileptic generalised spike wave activity

It is unclear whether neurovascular coupling is maintained during epileptic discharges. Knowing this is important to allow appropriate inferences from functional imaging studies of epileptic activity. Recent blood oxygen level-dependent (BOLD) functional MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, parietal and posterior cingulate cortices during generalised sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2014